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Abstract 
The potential for common enclosures to reduce or prevent 

pollutant-induced deterioration of inkjet materials was 
investigated, with the specific research question being: Can any of 
the various commonly-used enclosure designs and materials 
(envelopes/boxes, paper/plastics) be used to effectively reduce or 
prevent the damage to digital prints caused by Ozone or Nitrogen 
Dioxide air pollution? The results indicate clear guidelines how to 
best proceed to mitigate pollutant gas damage. Polyester sleeves 
show by far the greatest potential for both pollutants over all tests 
conducted, which indicates this benefit may extend to the parts-
per-billion range. Increasing ppm values and equally reducing 
exposure times to create the same ppm-days exposure did not 
always result in the same color change to the prints inside or 
outside enclosures.  This importantly indicates extended time 
periods and lower concentrations could mean an enclosure’s 
effectiveness in preventing damage from pollution could be in fact 
much lower than that observed in highly accelerated testing (as 
seen in this work and elsewhere). This raises questions regarding 
the suitability of such techniques to appraise the efficacy of 
enclosures employed to deter pollution damage caused over longer 
periods (decades) at real world environmental pollution levels. 

Introduction 
An IPI survey of museums, archives, and libraries found that 

approximately 87% of cultural heritage institutions already have 
digital prints in their collections, that they are concerned about 
continuing influxes of these materials, and that they do not yet feel 
well informed on how to care for these materials. The same survey 
showed that objectionable deterioration to these objects has 
already occurred to portions of these collections including (but not 
limited to) fading, yellowing, color bleed, surface cracking and 
delamination. In total, 71% of institutions have already 
experienced deterioration of some part of their digital print 
collections [1]. Previous experimental research has established a 
clear connection between ozone and nitrogen dioxide to each of 
those forms of decay [2,3]. Ozone has been specifically shown to 
cause significant fade and delamination/cracking and nitrogen 
dioxide to induce yellowing and bleed. An understanding of 
effective methods to mitigate such damage will be critical to the 
survival of these objects. 

This research was the second part of a project aimed at 
settling a fundamental, long-term preservation policy and strategy 
question for museums: which will be the better general approach 
to mitigating the damage by pollutants to inkjet prints, lowered-
temperature storage or enclosures [4]? Deterioration due to 
pollutants occurs through chemical reactions, which may be 
slowed by low temperature or by minimizing contact between the 
pollutants and the collection objects through the use of barriers  
such as enclosures. The specific experiments in this project aimed 
to define the overall effectiveness of protection afforded by 

common enclosures (sleeves, envelopes, and boxes) made of paper 
and plastic in slowing attack by atmospheric ozone and nitrogen 
dioxide. 

There has been previous work to evaluate the effectiveness of 
enclosures in reducing the damage to collection objects by 
atmospheric pollutants [5,6,7]. However, this has never been 
performed for inkjet materials, which can be considerably more 
sensitive to attack than other collection object types. Also those 
experiments typically used single high concentration tests for short 
periods of time to replicate the long-term, low concentration 
exposures that materials are subjected to in actual use conditions 
and somewhat overlooked the effects of the gas diffusion rates into 
the enclosures over time.  
 

Material and Methods 
Samples were exposed in ozone and nitrogen dioxide test 

chambers which were custom built for IPI and capable of 
automated regulation of pollution levels . The ozone was produced 
by means of a UV lamp, while the NO2 was provided by a gas tank 
(2% NO2 in air). The gas concentration in each chamber was 
monitored during the extent of the tests and kept within the target 
values (+ 0.5 ppm). Prior to this experiment a uniformity of 
induced color change was observed for free hanging prints 
independent of location within the chamber.  

The test targets consisted of a color step wedge containing 10 
levels of cyan, magenta, yellow, and black (CMYK) and two 
minimum density (Dmin) patch (see figure 1). 

 

 
Figure 1. Pollution Test Target 

The targets were created using Adobe InDesign and 
converted to PDF for printing. The print/target was sized to fit 
common 4”x5” paper storage envelopes and polyester sleeves. 
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Four papers and four printers were used. Two of the test 
samples were two different micro-porous type photo papers 
printed with two different dye-based inkjet printers (including dye 
black). These prints were selected because they were found to be 
especially sensitive to pollutant-induced fade in previous IPI 
experiments. In addition, a chromogenic photographic paper and a 
printing paper commonly used in electrophotographic (EP) digital 
presses, and previously shown to be sensitive to yellowing were 
included. Highly sensitive examples were chosen to provide the 
most conservative results and recommendations. After printing, all 
samples were allowed to dry for one week in the dark in a climate-
controlled room at 21ºC and 50% RH before testing.  

Table 1 summarizes the printer-paper combinations selected 
for the tests.    
  
Table 1: Printer Paper Combinations Tested. 

Usage Paper Type    Printer 

1 Photograph Microporous RC Dye Inkjet 
2 Photograph Microporous RC Dye Inkjet 
3 Photograph Chromogenic RC RA4 
4 Document Coated glossy Electrophotographic 

 
Measurements of the color step wedge target was made using 

a Gretag Spectrolino/Spectroscan spectrophotometer. CIELAB 
(D50, 2º Observer, UV included) and color differences were 
calculated in the ΔE00 color difference unit (DE2000).The 
enclosures which were tested are shown in table 2.   
 
Table 2: Test samples storage conditions. 
Number Enclosure Type 

1 No enclosure (free hanging) 
2 Paper envelope (non-buffered paper) 
3 Paper envelope (buffered paper) 
4 Window matted in a cardboard box 
5 Polyester sleeve 
6 Cardboard box (archival) 
7 Paper envelope (buffered) in a cardboard box 
8 Polyester sleeve in a cardboard box 

 
The testing regime for printer paper combinations 1 and 2 

which were tested in Ozone is summarized as follows. 
 
Table 3: Tests for Printer Paper Combinations 1 and 2 in O3.. 
O3 Concentration Pull time Cumulative Exposure 

5 ppm 7 days 35 ppm-days 
1 ppm 35 days 35 ppm-days 

0.2 ppm 175 days 35 ppm-days 
 
The testing regime for printer paper combinations 3 and 4 

which were tested in Nitrogen Dioxide is summarized as follows. 
 

Table 4: Tests for Printer Paper Combinations 3 and 4 in NO2. 
NO2 Concentration Pull time Cumulative Exposure 

9 ppm 21 days 189 ppm-days 
6 ppm 31.5 189 ppm-days 
3 ppm 63 days 189 ppm-days 

 
Results 

All color change for the 40 printed patches in 8 different 
enclosure types (denoted by number as shown in table 2) are 
shown in figures 2 and 3. 
 
O3 test of Paper 1 and 2 
 

 
Figure 2. All pollution induced color change data (y axis) of paper 1 and 2 in 8 
different enclosures (x axis). 

 
NO2 test of Paper 3 and 4 
 

 
 

Figure 3. All pollution induced color change data (y axis) of paper 3 and 4 in 8 
different enclosures (x axis). 

 
Result across O3 ppm range for Papers 1 and 2 

The results for a mid grey patch for papers 1 and 2 are shown 
in figure 4 and 5.  
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Figure 4. Pollution induced color change of a mid grey patch printed on paper 
1, for the same ppm-days exposure (y axis) at 3 different ppm levels (x axis). 
 

 

 
Figure 5. Pollution induced color change of a mid grey patch printed on paper 
2, for the same ppm-days exposure (y axis) at 3 different ppm levels (x axis). 
 
 

Result across NO2 ppm range for Papers 3 and 4 
The results for the minimum density (Dmin) patches for papers 

3 and 4 are shown in figure 6 and 7.  
 

 
Figure 6. Pollution induced color change of a minimum density (Dmin) patch 
on paper 3, for the same ppm-days exposure (y axis) at 3 different ppm levels 
(x axis). 
 

 
Figure 7. Pollution induced color change of a minimum density (Dmin) patch 
on paper 4, for the same ppm-days exposure (y axis) at 3 different ppm levels 
(x axis). 
 

Conclusions 
As all the test conditions for a particular gas provided the 

same cumulative exposure, any difference in the color change 
observed for a particular colored patch can be thought to be due to 
differences of the diffusion rates of the pollutants into the 
enclosures, the possible reduction in gas concentration due to 
reaction with materials on entry and the potentially varied 
response of the colorant’s degradation pathway to different 
pollutant ppm levels for the same total number of ppm-days.  
These results indicate varied combinations of ppm level and 
exposure time resulting in the same ppm-days exposure does not 
obey a “reciprocal relationship” [8,9,10].   This means decreasing 
ppm values and equally extending exposure time to create the 
same ppm-days exposure may not always result in the same color 
change to the prints inside or outside enclosures.  This importantly 
indicates extended time periods and lower concentrations could 
mean an enclosures effectiveness in preventing damage from 
pollution could be in fact much lower/higher than that observed in 
highly accelerated testing (as seen in this work and elsewhere).  
 

This could be thought to raise questions regarding the ability 
of such techniques to quantitatively appraise the efficacy of 
enclosures employed to deter real pollution damage caused over 
longer periods in the parts-per-billion range. Despite this 
uncertainty the results from the tests indicate clear guidelines on 
how to best proceed to mitigate damage to inkjet prints due to 
pollutant gases. Polyester sleeves showed by far the greatest 
potential to prevent damage from either pollutant or pollution 
exposure. They show clear benefit across the ppm and time range 
of exposures for both gases. This indicates that this same benefit is 
more likely to extend to the parts-per-billion range. Polyester 
sleeves when in a cardboard box showed the same change 
indicating that again polyester sleeves are responsible for the 
observed damage mitigation. Window matted prints stacked in the 
center of a cardboard box also show large benefits although no test 
was conducted for the top and bottom of the stack. 

 
Paper envelopes (buffered and non-buffered) either alone or 

in a cardboard boxes provided little to no protection against 
pollutants. 
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